Glycemic state regulates melanocortin, but not nesfatin-1, responsiveness of glucose-sensing neurons in the nucleus of the solitary tract.

نویسندگان

  • Andrea Mimee
  • Alastair V Ferguson
چکیده

The nucleus of the solitary tract (NTS) is a medullary integrative center with critical roles in the coordinated control of energy homeostasis. Here, we used whole cell current-clamp recordings on rat NTS neurons in slice preparation to identify the presence of physiologically relevant glucose-sensing neurons. The majority of NTS neurons (n = 81) were found to be glucose-responsive, with 35% exhibiting a glucose-excited (GE) phenotype (mean absolute change in membrane potential: 9.5 ± 1.1 mV), and 21% exhibiting a glucose-inhibited (GI) response (mean: 6.3 ± 0.7 mV). Furthermore, we found glucose-responsive cells are preferentially influenced by the anorexigenic peptide α-melanocyte-stimulating hormone (α-MSH), but not nesfatin-1. Accordingly, alterations in glycemic state have profound effects on the responsiveness of NTS neurons to α-MSH, but not to nesfatin-1. Indeed, NTS neurons showed increasing responsiveness to α-MSH as extracellular glucose concentrations were decreased, and in hypoglycemic conditions, all NTS neurons were depolarized by α-MSH (mean 10.6 ± 3.2 mV; n = 8). Finally, decreasing levels of extracellular glucose correlated with a significant hyperpolarization of the baseline membrane potential of NTS neurons, highlighting the modulatory effect of glucose on the baseline excitability of cells in this region. Our findings reveal individual NTS cells are capable of integrating multiple sources of metabolically relevant inputs, highlight the rapid capacity for plasticity in medullary melanocortin circuits, and emphasize the critical importance of physiological recording conditions for electrophysiological studies pertaining to the central control of energy homeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nesfatin-1 in the Lateral Parabrachial Nucleus Inhibits Food Intake, Modulates Excitability of Glucosensing Neurons, and Enhances UCP1 Expression in Brown Adipose Tissue

Nesfatin-1, an 82-amino acid neuropeptide, has been shown to induce anorexia and energy expenditure. Food intake is decreased in ad libitum-fed rats following injections of nesfatin-1 into the lateral, third, or fourth ventricles of the brain. Although the lateral parabrachial nucleus (LPBN) is a key regulator of feeding behavior and thermogenesis, the role of nesfatin-1 in this structure has n...

متن کامل

Nesfatin-1-regulated oxytocinergic signaling in the paraventricular nucleus causes anorexia through a leptin-independent melanocortin pathway.

The hypothalamic paraventricular nucleus (PVN) functions as a center to integrate various neuronal activities for regulating feeding behavior. Nesfatin-1, a recently discovered anorectic molecule, is localized in the PVN. However, the anorectic neural pathway of nesfatin-1 remains unknown. Here we show that central injection of nesfatin-1 activates the PVN and brain stem nucleus tractus solitar...

متن کامل

Nesfatin-1 influences the excitability of neurons in the nucleus of the solitary tract and regulates cardiovascular function.

Nesfatin-1 has been identified as one of the most potent centrally acting anorexigenic peptides, and it has also been shown to play important roles in the control of cardiovascular function. In situ hybridization and immunohistochemical studies have revealed the expression of nesfatin-1 throughout the brain and, in particular, in the medullary autonomic gateway known as the nucleus of the solit...

متن کامل

Stressor-responsive central nesfatin-1 activates corticotropin-releasing hormone, noradrenaline and serotonin neurons and evokes hypothalamic-pituitary-adrenal axis

A recently discovered satiety molecule, nesfatin-1, is localized in neurons of the hypothalamus and brain stem and colocalized with stress-related substances, corticotropin-releasing hormone (CRH), oxytocin, proopiomelanocortin, noradrenaline (NA) and 5-hydroxytryptamine (5-HT). Intracerebroventricular (icv) administration of nesfatin-1 produces fear-related behaviors and potentiates stressor-i...

متن کامل

Nesfatin-1 inhibits NPY neurons in the arcuate nucleus.

Although the novel satiety factor nesfatin-1 has been shown to influence feeding behavior through effects on melanocortin signaling, the specific hypothalamic neuronal substrates through which such effects are mediated have yet to be elucidated. To identify neuronal cell types potentially important in mediating nesfatin-1's effects, whole cell current clamp recordings were made from hypothalami...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 308 8  شماره 

صفحات  -

تاریخ انتشار 2015